Learning in Graphical Models - Pdf eBook Download
Poster Not Found

Read Now Download


Title Book: Learning in Graphical Models
Author : Michael Irwin Jordan
ISBN 10: 0262600323
ISBN 13: 9780262600323
Publisher : MIT Press
Category : Computers / Intelligence (AI) & Semantics
Languages : en
Pages : 634
File Type : PDF EPUB DOCX TEXT
File Size : 46,6 Mb
Total Download : 509
Total Read : 90
Uploaded: Thursday, 27-04-2017 New
Status: AVAILABLE Last checked: 24 Minutes ago!


Ebook Rating

9.7

  22453 Member Vote

Read Now Download

Graphical models, a marriage between probability theory and graph theory, provide a natural tool for dealing with two problems that occur throughout applied mathematics and engineering -- uncertainty and complexity. In particular, they play an increasingly important role in the design and analysis of machine learning algorithms. Fundamental to the idea of a graphical model is the notion of modularity: a complex system is built by combining simpler parts. Probability theory serves as the glue whereby the parts are combined, ensuring that the system as a whole is consistent and providing ways to interface models to data. Graph theory provides both an intuitively appealing interface by which humans can model highly interacting sets of variables and a data structure that lends itself naturally to the design of efficient general-purpose algorithms.

This book presents an in-depth exploration of issues related to learning within the graphical model formalism. Four chapters are tutorial chapters -- Robert Cowell on Inference for Bayesian Networks, David MacKay on Monte Carlo Methods, Michael I. Jordan et al. on Variational Methods, and David Heckerman on Learning with Bayesian Networks. The remaining chapters cover a wide range of topics of current research interest.



Click the button below to register a free account and download the file


info**Please Disable Adblock to Show Download Link**



Read Now Download